

Beyond 5G/6G R&D Status of NICT

October 25, 2022

Hideyuki Tokuda, Ph.D.

President, National Institute of Information and Communications Technology Professor Emeritus, Keio University

National Institute of Information and Communications Technology

Japan's only public research institute specialising in ICT

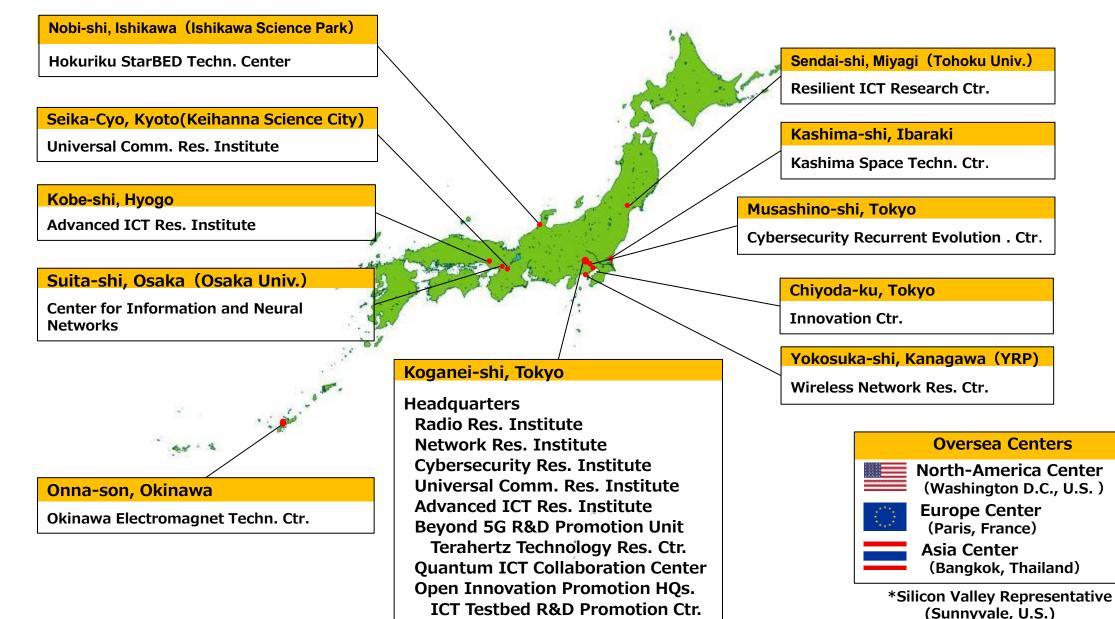
NICT Personnel and Budget

- Location: HQ in Koganei, Tokyo
- Personnel: ~ 1300
- Researchers: ~730
- Budget: ~\$260M + α (2020)
- 5th Mid-to-Long Term Plan: April 2021 March 2026

Public Services:

- Japan Standard Time
- Space Weather Forecast
- Wireless Equipment Testing & Calibration
- Cybersecurity Training

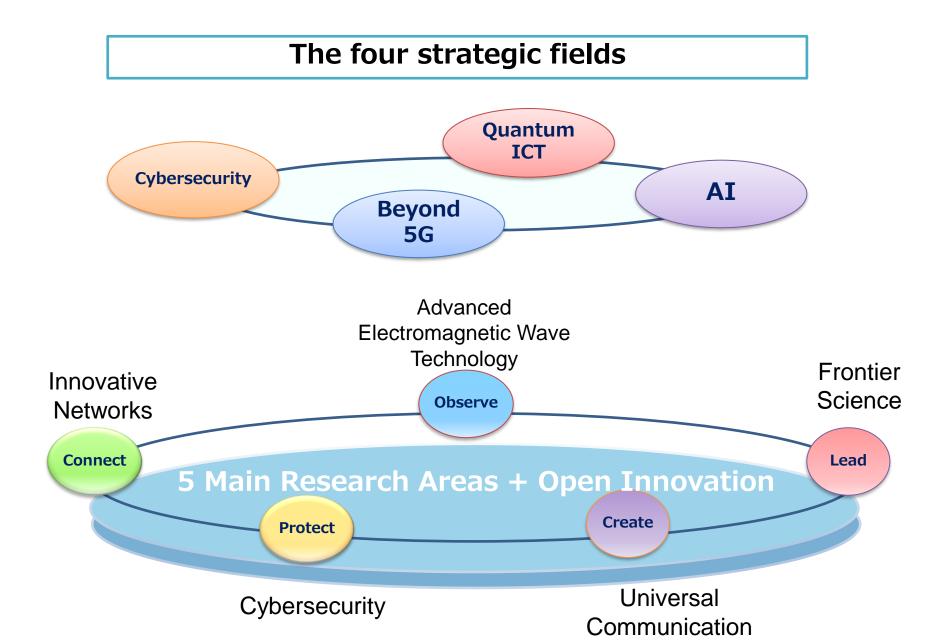
5 Main Research Areas:


- Advanced Electromagnetic
 Wave Technology
- Innovative Networks
- Cybersecurity
- Universal Communication
- Frontier Science

Funding Agency:

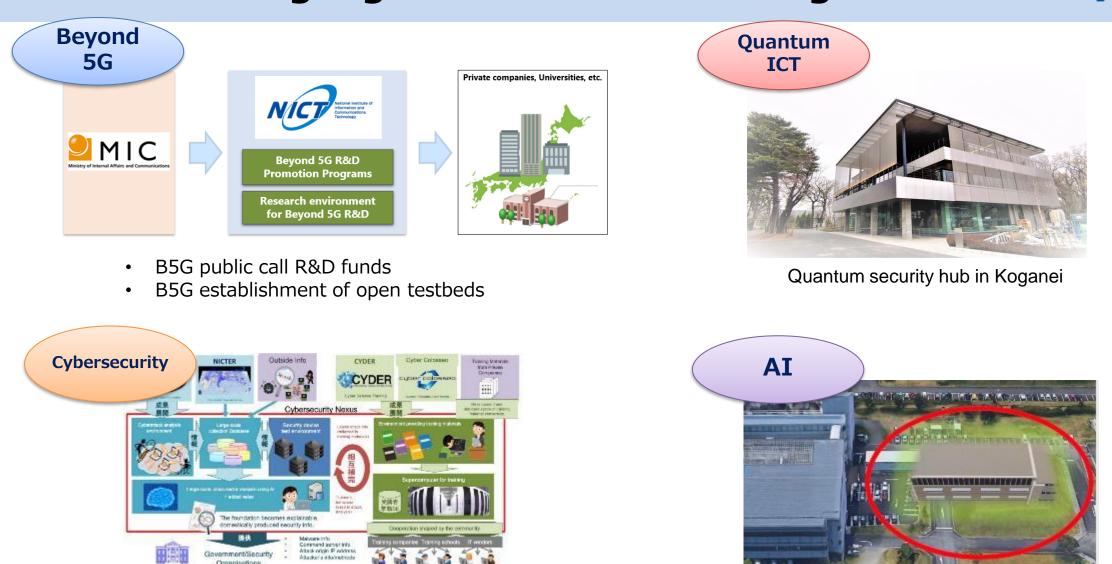
- Domestic ICT Projects
- US-Japan Projects
- EU-Japan Projects
- ASEAN-IVO Projects
- Taiwan-Japan Projects

NICT Facilities



NICT Beyond 5G/6G R&D Strategy

New ICT Strategies for the Beyond 5G Era



From the Information and Communications Council, ICT Strategy Council

Highlights in the Four Strategic Fields

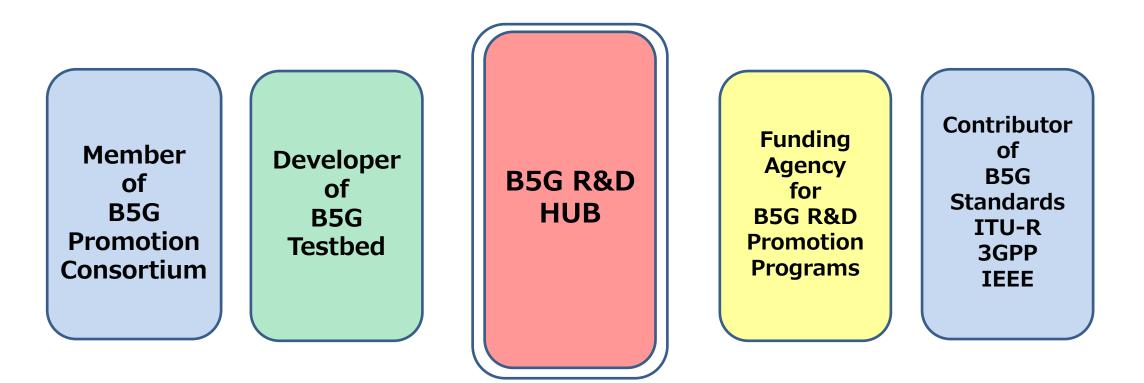
Establishment of Cybersecurity Nexus

Organisations

Collaboration hub for industry-academia-government collaboration for information gathering, analysis and personnel development

Establish AI (for language processing) computer environment in the Keihanna region.

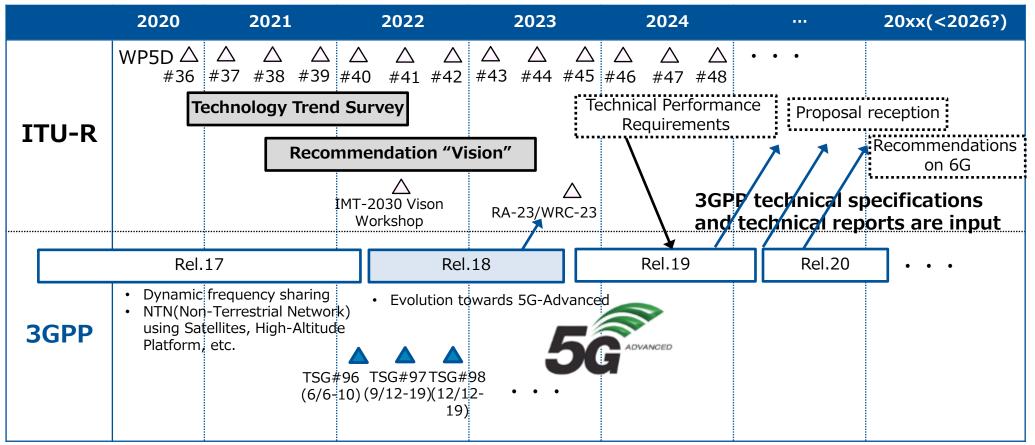
A Future with N (203x) (by NICT 2022) N/C



National Institute of Information and Communications Technology

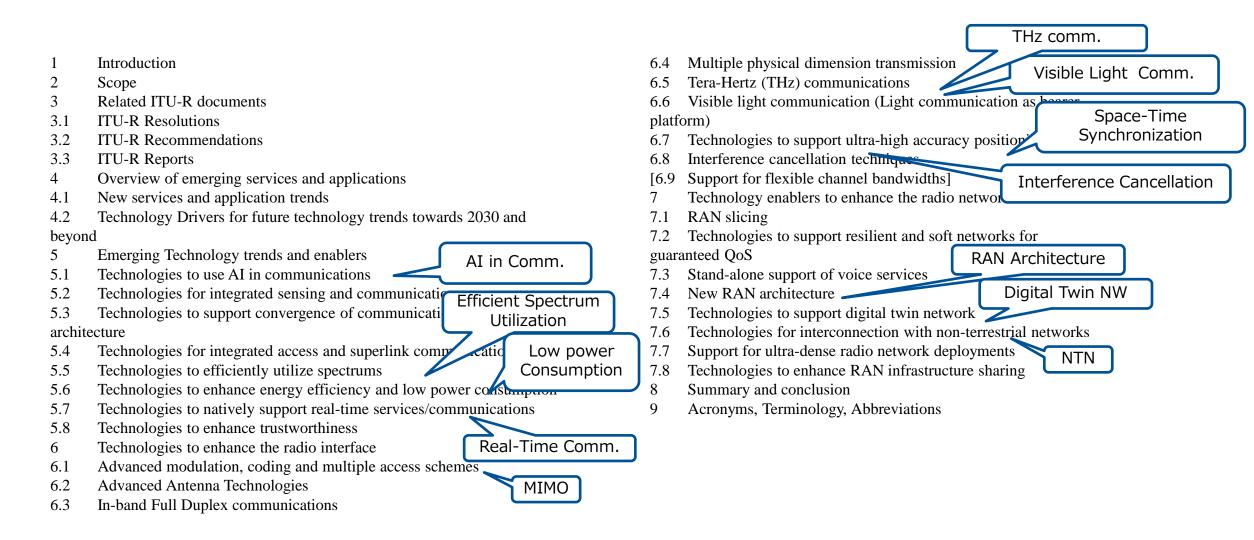
NICT's Role for B5G/6G Development

- NICT is a R&D HUB for B5G/6G Development in Japan
- NICT offers a B5G Testbed for Developers
- NICT serves as a Funding Agency of B5G R&D Promotion Programs
- NICT is a member of B5G Promotion Consortium
- NICT is a contributor of B5G Standards (ITU-R, 3GPP, IEEE, etc)



Beyond 5G/6G Standardization Activities

Standardization Activities for Beyond 5G/6G


- The ITU-R SG5 WP5D has complete Future Technology Trend Report on 6G in 2022. Recommendation "Vision" will be formulated in June 2023.
- 3GPP started its next period **"Release 19"** to consider "**5G-Advanced"**. The Release 18 agenda items will be set by the end of 2021.
- From March 2021, NICT has submitted contributions and participated in the discussion on Terahertz, Space-Time Synchronization, and Non-Terrestrial Network (NTN) as NICT technology seeds related to Beyond 5G.

ITU-R (WP5D) IMT-2030's Report (5D/1078 Annex5.4)

Future Technology Trends (FTT) and Recommendation

Proposal documents from NICT

		Radiocommunication Study Groups	•
	F	teceived: 22 February 2021	Document 5D/440-E 22 February 2021 English only
			TECHNOLOGY ASPECTS
Radioco	ommunication Study G	roups	cations Technology (NICT)
Received:	28 May 2021	Document 5D/609-E 28 May 2021 English only	_ RDS PRELIMINARY DRAFT LOGY TRENDS TOWARDS
		TECHNOLOGY ASPECTS	
PROPOS	AL FOR WORKING DOCU	and Communications Technology (NICT) JMENT TOWARDS PRELIMINARY DRAFT TURE TECHNOLOGY TRENDS TOWARDS	
	2030 A	AND BEYOND]	HNOLOGY TRENDS TOWARDS
l	Introduction		echnical aspects of terrestrial IMT beyond. It includes information on sstrial IMT systems, including the and spectrally-efficient techniques,
olan and so TRENDS leveloped t	cope for the preliminary draft n TOWARDS 2030 AND BEYO the initial outline and scope of the	5D in February 2020, WP 5D agreed the detailed work ew Report ITU-R M.[IMT.FUTURE TECHNOLOGY ND]. At the 38th meeting in March 2021, WP 5D e working document and further discuss at this meeting.	should be included in the working M.[IMT.FUTURE TECHNOLOGY
	ionally agreed scope of the ne OWARDS 2030 AND BEYONI	w Report ITU-R M.[IMT.FUTURE TECHNOLOGY] is as follows:	
	systems considering the time-fra technical and operational char-	view of future technical aspects of terrestrial IMT ime up to 2030 and beyond. It includes information on acteristics of terrestrial IMT systems, including the neces in technology and spectrally efficient techniques,	JTURE TECHNOLOGY TRENDS
Report ITU vhich is up	-R M.[IMT.FUTURE TECHNO	he working document towards a preliminary draft new LOGY TRENDS TOWARDS 2030 AND BEYOND], stitute of Information and Communications Technology	scheme is the main bottleneck of
2	Proposal		
		4 texts for the draft working document at the previous tes based on Attachment 5.7 of Document <u>5D/545</u> .	
		aft working document as follows:	
	the view to update the current dra		
	Existing Section 6.5, Sub-section	on 6.5.2, 6.5.3(former 6.5.1 and 6.5.2), and new 6.5.1 gy related to Terahertz Communications.	

◀ Contributions to ITU-R WP5D (5D/440, 5D/609)

Proposals for the realization of Beyond 5G / 6G for Terahertz, Space-Time synchronization, and Non-Terrestrial Network (NTN).

Contribution to 3GPP SA Rel.18 Workshop (SP-210612)

Proposal of ultra-low latency and high-precision positioning technology by Space-Time synchronization technology.

3GPP SA Rel-18 workshop Virtual meeting, 09-10 Sep. 2021 Agenda Item 3 SP-210612

Space-Time synchronization:

Phase synchronization, clocks, and positioning in advanced regime

Perspective for Rel 18

Contact: std_stsl@ml.nict.go.jp std@ml.nict.go.jp

Future Tech Trends Draft New Report (Document 5D/TEMP/677-E)

NICT contributed related text concerning Wireless Space-Time Synchronization technology that can enable ultra low latency and high precision location at millimeter level.

5.7 Technologies to natively support real-time services and communications

Two technology components are considered to achieve real-time communications with extremely low latency. The first one is accurate time and frequency information shared in the terrestrial network. When network nodes are equipped with compact atomic clocks, their high holdover performance can dramatically reduce synchronization iterations. The high frequency accuracy obtained from the atomic clocks also reduces the frequency offset between transmitter and receiver, leading to the low bit error ratio particularly in high carrier frequency. The collection of the time differences among node clocks facilitates the estimation of more stable and robust time using the maximum likelihood method, and the result can be delivered back to each node for their self-corrections. Wireless space-time synchronization, where clocks are synchronized at pico-second level together with the determination of positions, is another method on which low latency communication protocol can be built with a capability of autonomous and distributed operations. Such synchronized network supports the schedule management in edge processing in mobile backhauls. The common time and frequency can be traceable to the standard time or frequency by linking one node to the precision time/frequency source.

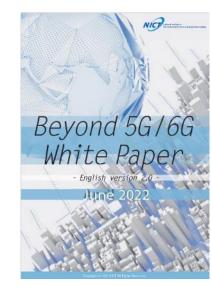
(中略)

The benefit of these two technologies can be further enhanced by adopting time-sensitive communications protocols, which enables the prioritization of latency-sensitive or mission-critical traffic, facilitating to real-time communications. Resource management can be supported by leveraging application-domain information on the predictability of actual resource requirements by considering the context and traffic characteristics. Periodic transmissions can be pre-scheduled with given and precise time boundaries while AI and ML tools can be used to schedule algorithms. Resource allocation for real-time communications may also span over a multi-dimensional solution space comprising multi-RAT, multi-link, etc. These would be managed by a dedicated real-time management function that would track resource needs, availability, and surrounding environment.

6.6 Technologies to support ultra-high accuracy positioning

(中略)

Precision of synchronization is critical to positioning technologies that are based on time of flight (ToF) measurement of traveling waves, such as ultrasonic sound, light, and radio wave. Another positioning technology that requires synchronization is the stereo vision-based positioning. As the synchronization technology matures better toward 2030, it is conceivable that **wireless space-time synchronization** in future IMT to be available by around 2030, enabling Location Based Services to fully equipped with higher precision localization capability.


(中略)

NICT contributed

NICT contributed

NICT Beyond 5G/6G White Paper Ver. 2.0

NICT Beyond 5G/6G White Paper Ver. 2.0 NICT

It summarizes the scenarios, the use cases that appear in the scenarios, the key technologies and requirements to realize them, the R&D roadmap, and the deployment strategy.

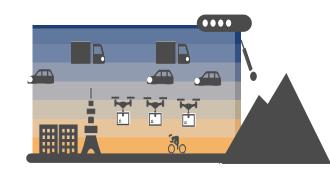
(Source: https://beyond5g.nict.go.jp/en/index.html)

Some videos of Beyond 5G scenarios

NICTchannel - YouTube

Scenarios 1 to 3 are available on YouTube "NICTchannel".

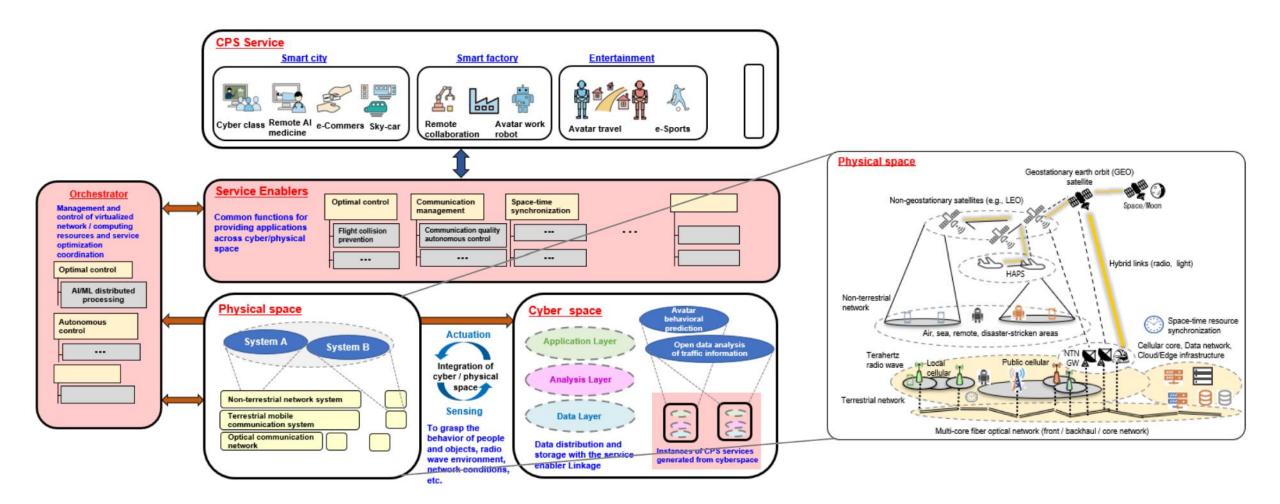
NICT B5G/6G White paper: 4 Scenarios



Scenario 1 – Cybernetic Avatar Society (CAS)

- Cybernetic Avatar Society (CAS) is one in which people can maximize their abilities and share the skills and experiences of diverse people.
- Safe and secure Society 5.0: A society where anyone can play an active role freely by using CA, free from time, space, and physical constraints.
- Scenario 2: City on the Moon (COM)
 - Cybernetic Avatars on the Moon
 - Moon Travel, Street View in Space
- Scenario 3: Vertical Flow of People, Things and Information (IOVT)
 - Autonomous Drone, Sky-car, Sky-truck
 - Warehouse in the stratosphere

NICT B5G/6G White paper: 4 Scenarios



■ Scenario 4: Light and Shadow of the Cyber World

- Cyber Trouble Counseling Room
- UC-1: Issues in AI Agent
 - It is not preferable from the viewpoint of privacy protection to analyze and convert personal interests, beliefs, habits, temperaments, etc. of specific individual consumers into data.
 - Separation of data/privacy protection and analysis
- UC-2: Issues of fairness, accountability and transparency (FAT), ethics and values in AI

B5G Architecture for open service framework

An open platform is expected to accommodate various systems and promote flexible service creation where ICT and other technologies are optimally integrated.

Key technologies for Beyond 5G

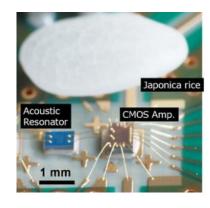
т1.	Ultra	high-speed and high-capacity wireless communication			
	T1.1 Terahertz wave				
T1.2 All-optical network (high-capacity optical fiber communication)					
	T1.3	All-optical network (optical and radio convergence technology)			
Τ2.	Ultra	low latency and ultra-multi-source connection			
	T2.1	Edge computing technology			
	T2.2	Adaptive wireless network construction technology			
	T2.3	3 Adaptive wireless network application technology			
	T2.4	Autonomous localization, tracking and reservation technologies for radio wave radiation space			
	T2.5	Autonomous M2M network construction technology with super multi- connection			
T3. Wired and wireless communication and network control technology					
	T3.1	T3.1 Network control technology (Zero-touch automation)			
T3.2 Frequency allocation and sharing management		Frequency allocation and sharing management			
	T3.3	Private wireless system management (Local Beyond 5G)			
	T3.4	Advanced wireless emulator			
Τ4.	Multi	-Layer wireless systems - NTN			
	T4.1	Satellite and non-terrestrial communication platform			
	T4.2	Optical satellite communication			
	Maritime communication				
	T4.4	Underwater and submarine communication			
	T4.5	Cooperative control of multi-layered networks			

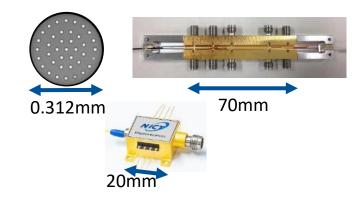
Γ5.	Space-time synchronization						
	T5.1	Wireless Space-Time Synchronization					
	T5.2	Chip-Scale Atomic Clock					
	T5.3	Generation and sharing technology for reference time					
Γ6.	Ultra-	Ultra-security and reliability					
	T6.1	Emerging security technology					
	T6.2	Cyber security technology based on real attack data					
	T6.3	Quantum cryptography					
	T6.4	Electromagnetic environmental technology					
	T6.5	Resilient ICT					
	T6.6	Sensing					
17. Ultra-realistic and Innovative Applications							
	T7.1	Brain information reading, visualization, and BMI technology					
	T7.2	Intuition measurement, transmission and assurance technologies					
	T7.3	Real 3D avatars, multisensory communication and XR technology					
	T7.4	AI analytics and dialogue technology using language and extra- linguistic information					
	T7.5	Edge AI behavioral support					
	T7.6	Simultaneous multi-lingual interpretation, paraphrase and summarization technology					
	T7.7	Automated driving					
	T7.8	Drones					

- The key technologies are extracted and categorized from the use cases.
- Beyond 5G/6G Services are created with proper combination of the technologies.

Technologies for Beyond 5G / 6G

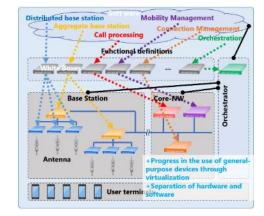
Increasing the capacity of wireless communications (Using terahertz band, etc.)


THz Band Silicon Semiconductor

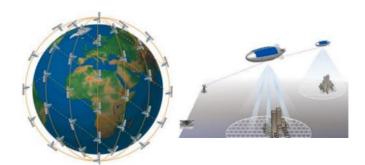

THz Band Compact antenna

Space-time synchronization

+Inter terminal coordination +Non-GPS positioning system +Remote synchronization

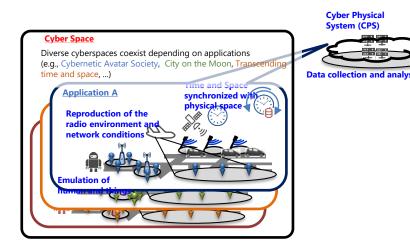


Increasing the capacity of the core network Multi-core fiber, multi-mode fiber, etc.



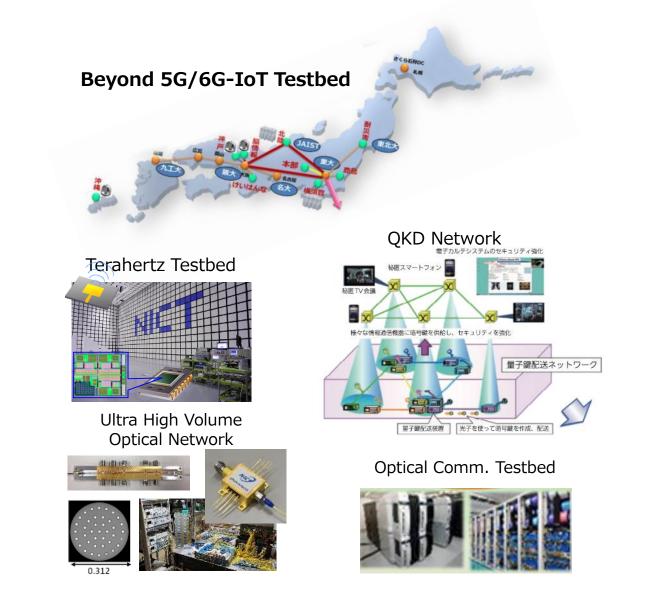
Virtualization

- +Cloud native
- +Highly available resource allocation
- +Network Control with AI
- +Autonomic networks



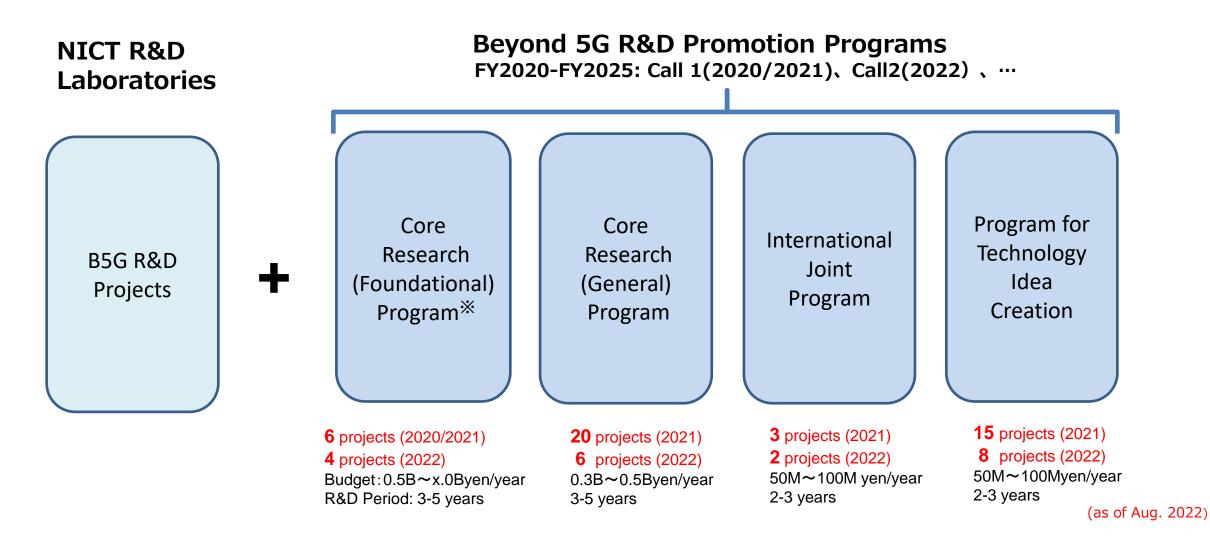
Coverage expansion/NTN Satellite constellations, HAPS, etc.

Network slicing


Network functions and resources can be dynamically managed and flexibly selected.

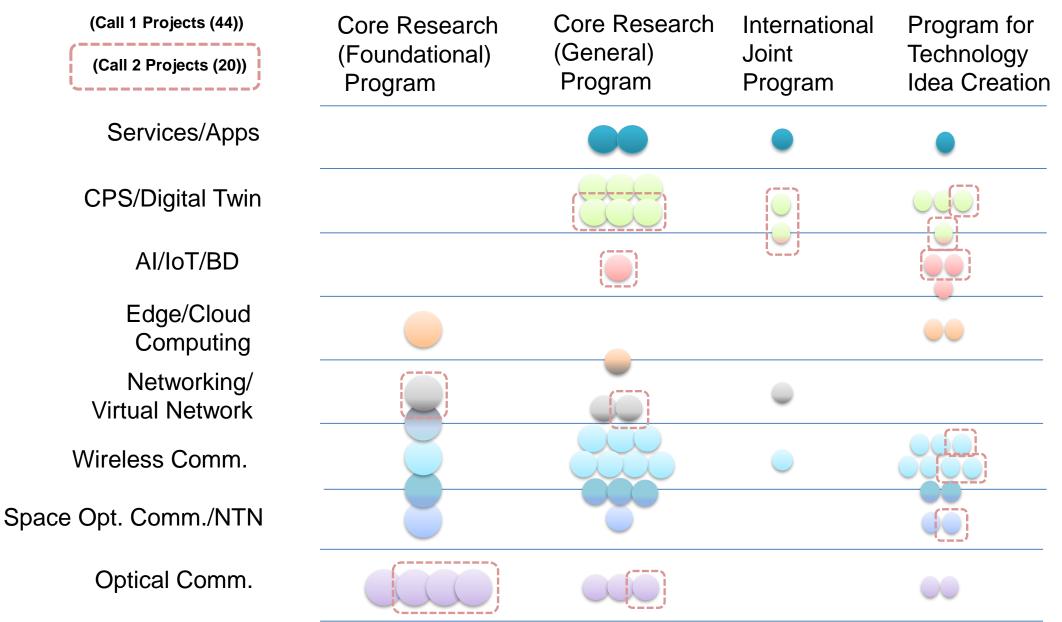
Open B5G R&D Testbed & Platform

- Extend and improve testbed environment to accelerate
 B5G development
- Highly reliable and highly plastic Beyond 5G/6G-IoT testbed
- Beyond 5G/6G Transmission Infrastructure Technology Development Environment
- Ultra-high-speed optical communication technology development facilities supporting Beyond 5G / 6G



NICT Beyond 5G/6G R&D Promotion Program

B5G R&D Projects Call 2.0(April 22, 2022)
 B5G R&D Projects Call 2.1(April 28, 2022)


Beyond 5G R&D Promotion Programs

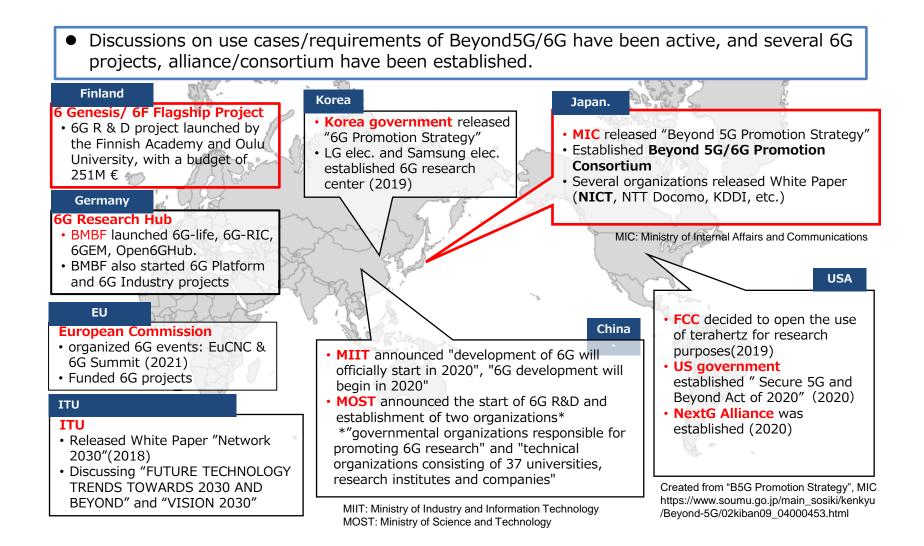
Beyond 5G R&D Promotion Programs Call 1+ 2 Portfolio (as of Aug. 2022)

Beyond 5G R&D Project: SIG (Special Interest Group)

1 Purpose of SIG

- SIGs are grouped into several categories according to the interests of research and development implementers and technical fields. Main purpose is as follows:
 - Raise the effect of R&D results through interaction between members within the group and between groups
 - Trigger information exchange and coordinated activities related to intellectual property and standardization
 - Becomes an activity unit for social development and publicity of results, such as workshops

2 Configuration of SIG (as of October 2022)


SIG	technical field		SIG	technical field		
1	Computing using high-speed large- capacity communication, AI, robotics		5	Advanced signal processing and protocols		
2	Security, cyber-physical systems, IoT, smart cities		6	Materials/Devices/Terminals		
3	Network Convergence, Beyond 5G Architecture		7	Millimeter/terahertz wave communication/sharing study		
4	Coverage extension, sensing		8	Optical wireless communication/Optical radio convergence communication		

NICT– Oulu Univ. Cooperation

Beyond 5G / 6G Initiatives

Beyond 5G/6G Trials/Demos in 2025

Connected B5G/6G testbed

- Development of radical 6G use cases in both testbed
- Testing and Verifying 6G capabilities with these testbed
- Joint Demonstrations
 - Expo 2025 Osaka, Kansai, Japan
 - Demonstration of B5G/6G Interoperability
 - Demonstration of radical 6G use cases with interoperability

Beyond 5G R&D Project Portal Site

Portal site

- Published in March 2022. Project related information is posted as a portal site. We are providing notifications of new R&D recruitment and summaries of adopted R&D projects.
- English content is gradually expanded.

https://b5g-rd.nict.go.jp/en/

NICT

Includes an overview and testbed overview.

https://b5g-rd.nict.go.jp/en/B5G_pamphlet_en_202204.pdf

NICT

Beyond 5G R&D Promotion Project

Beyond 5G R&D Promotion Project (C

Thank you

NICT will continue to contribute to create a better society by ICT www.nict.go.jp