HAPSの取り組みについて

2024年1月23日 ソフトバンク株式会社

ソフトバンク株式会社 概要

代表取締役 社長執行役員 兼 CEO

事業内容

売上高

従業員数

モバイルユーザ数^{*}

※主要回線累計契約数

宮川 潤一

移動/固定通信事業 ICTソリューションの提供

5兆9,120億円

(2022年度)

19,045人

(2023年3月末現在)

約4,000万件

(2023年3月末現在)

ソフトバンクグループを牽引する中核企業

ソフトバンクの主なグループ会社

ソフトバンクの注力領域

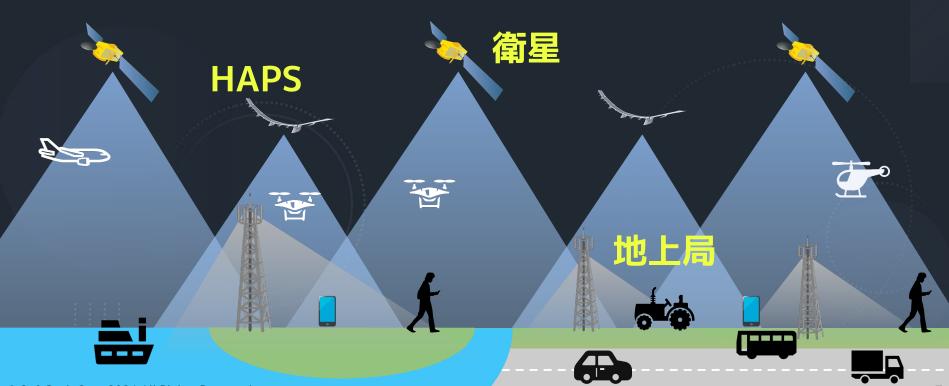
今後のさらなる成長に向け、既存領域の拡大に加え 新規領域への事業拡大を推進中

既存通信事業の拡大

次世代社会インフラ

NTN

(非地上系ネットワーク)



ユビキタスネットワーク構想

あらゆるものが「自動化」される社会において つながり続けることが当たり前のようになる世界

ユビキタスネットワークへの要件

瞬時に切り替えが求められる

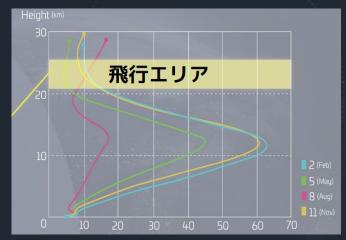
ユビキタスネットワーク構想

陸・海・空 あらゆる場所で圏外エリアのない世界を実現

	速度/遅延	特徴		
GEO	数十Mbps ~350msec	・広エリアカバー ・遅延が大きい		
LEO	百数十Mbps ~70msec	・従来衛星通信と比較して 高速大容量 ・冗長に制限あり (降雨減衰影響もあり)		
HAPS	数百Mbps 数十msec ※搭載ペイロードに依存 ・提供緯度に制限あり			
セルラー	最大20Gbps 1msec ※5Gスペック	・最良の通信品質 ・国土カバーに限界あり		

ユースケースに合わせ 最適な組み合わせを提供

HAPS


(成層圏通信プラットフォーム)

20km

成層圏から モバイル通信を提供

成層圏は年間通して安定した気流

Wind Speed

地上基地局: 3~10km

HAPSのカバレッジ範囲: 200km

HAPSの特徴

ソーラーパワー のみで飛行

任意座標での災害定点旋回

災害の影響を 受けにくい

構想実現の鍵 = 大型HAPSの実現

長時間耐空

広範囲カバレッジ

高品質通信

求められる性能

軽量と耐久性の両立 エネルギー効率向上

> 大容量/高性能 ペイロード 搭載可能

大型HAPSへの挑戦

盛り上がりを見せるHAPS業界の中で 大型HAPSの実現に唯一挑戦

	SoftBank [*]	A社	B社	C社
機体名	Sunglider	-	-	-
翼幅	78.9m	35m	25m	15m
総重量	1,000kg	150kg	65kg	43kg
ペイロード 重量	мах 75kg	15kg	5kg	2kg
飛行実績	2020年9月	2020年2月	2022年6月	2018年10月

※開発/製造ベンダー: AeroVironment, Inc.

弊社調べによる

HAPSを構成する技術

機体

未知なる成層圏環境で 大型かつ軽量/耐久性の実現

機体構造

通信技術

地上と連携しながら安定して 成層圏からの通信を届ける

ペイロード

軽量/高効率/低コスト 高エネルギー密度などを実現

太陽光パネル

バッテリー

成層圏用モーター

HAPSを構成する技術

機体

未知なる成層圏環境で 大型かつ軽量/耐久性の実現

機体構造

通信技術

地上と連携しながら安定して 成層圏からの通信を届ける

ペイロード

要素技術

軽量/高効率/低コスト 高エネルギー密度などを実現

太陽光パネル

バッテリー

成層圏用モーター

- · 無人飛行/遠隔操作
 - · ソーラー電力のみで飛行
- · 翼長:78.9m
- ・ 有効荷重量:75kg
- · 巡航速度:110km/h
- · 飛行高度:20,000m

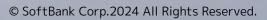
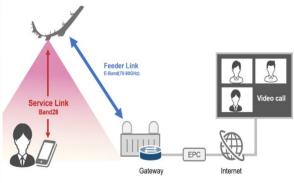


Photo credit: NASA/Carla Thomas

5th Flight: September 21st 2020

成層圏に到達

Total flight time		20 hours 16 minutes	
Duration in Stratosphere		5 hours 38 minutes	
Test environment	Max wind speed	58 knots (about 30 m/s)	
	Minimum temperature	-73 degrees	



成層圏飛行中のLTE通信に成功

Loon LLCとの共同実施

SpA (used HAPS network)

Vint Cerf

Jun Murai

Alastair Westgarth (Loon CEO)

2023には 次世代機体のサブスケールモデルの飛行試験に成功

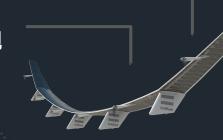
2020年 フライトテストにより コンセプトを実証

2024年現在 収集データを反映し 商用化に向け 更なる改良実施中

HAPSを構成する技術

機体

未知なる成層圏環境で 大型かつ軽量/耐久性の実現


機体構造

通信技術

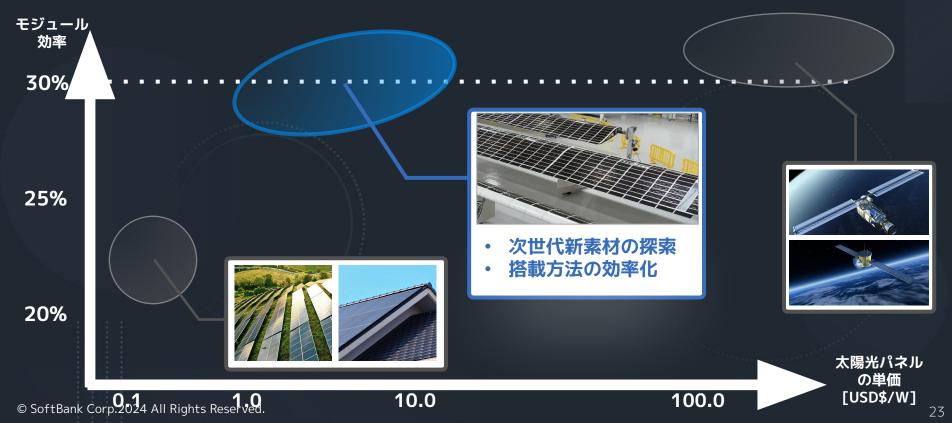
地上と連携しながら安定して 成層圏からの通信を届ける

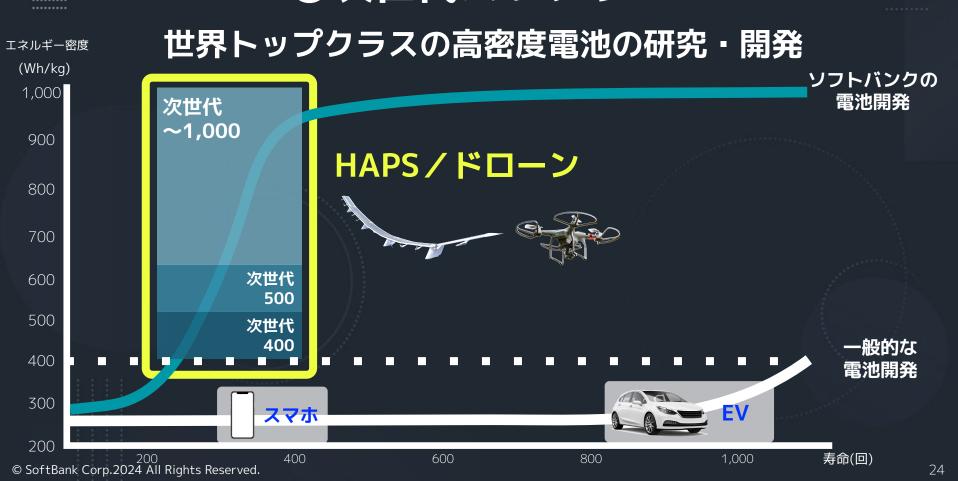
ペイロード

要素技術

軽量/高効率/低コスト 高エネルギー密度などを実現

太陽光パネル

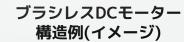

バッテリー


成層圏用モーター

①次世代ソーラーパネル

高効率かつ低価格の太陽光パネル開発が必要

②次世代バッテリー


③成層圏向けモーター

超効率化・高信頼・軽量モーターの開発

実証フライト後の要求仕様の例

- ・飛行の安全性/冗長性→10個の多発モーター構造
- ・ 連続動作 6ヶ月以上

磁石 (ローター)

コイル (ステーター)

HAPSを構成する技術

機体

未知なる成層圏環境で 大型かつ軽量/耐久性の実現

機体構造

通信技術

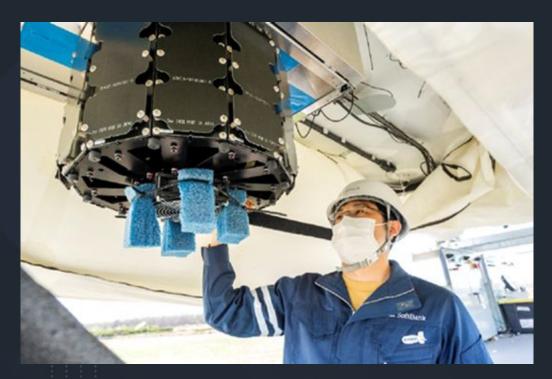
地上と連携しながら安定して 成層圏からの通信を届ける

ペイロード

要素技術

軽量/高効率/低コスト 高エネルギー密度などを実現

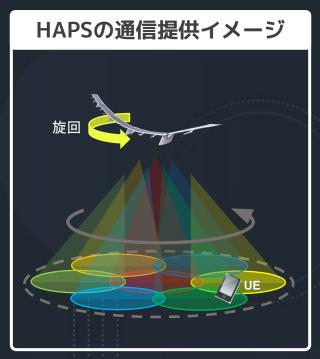
太陽光パネル


バッテリー

成層圏用モーター

HAPS通信技術

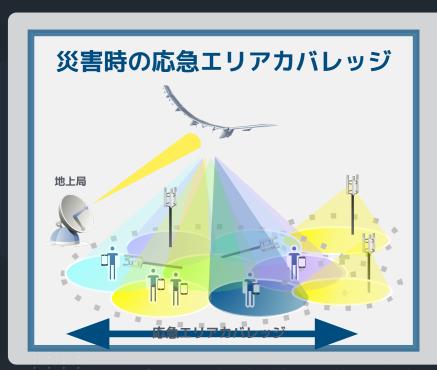
「シリンダーアンテナ」を用いたデジタルビームフォーミング制御

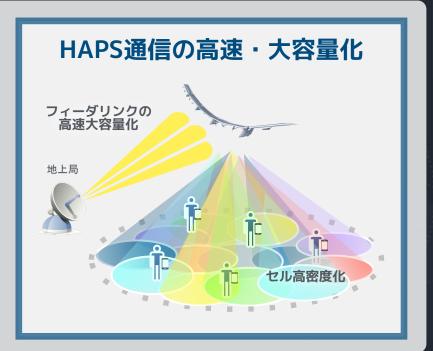


高高度係留気球を利用した実証実験

通信エリア固定技術

HAPSは旋回するが、通信エリアは旋回しない





Beyond 5G基金(HAPS)の取り組み

HAPSの社会実装・海外展開に向けて研究開発を加速

Beyond 5G基金への取り組み②

光無線・ワイヤレス電力伝送の社会実装に向けて研究開発を加速

NTN実用化に向けた光無線装置

ミリ波でのワイヤレス電力伝送

ルワンダにおけるHAPSの実証実験

成層圏からの5G通信試験に世界で初めて成功

5G通信機器を自社開発

デジタル格差・教育格差の 解消を目指す

HAPSの国際標準化の取り組み

WRC-23でのHAPS周波数追加を主導

HAPS周波数(700-900MHz/1.7-2.1GHz/2.6GHz)利用が正式承認

HAPSの実現に向けて各技術要素を推進

機体

未知なる成層圏環境で 大型かつ軽量/耐久性の実現

機体構造

通信技術

地上と連携しながら安定して 成層圏からの通信を届ける

ペイロード

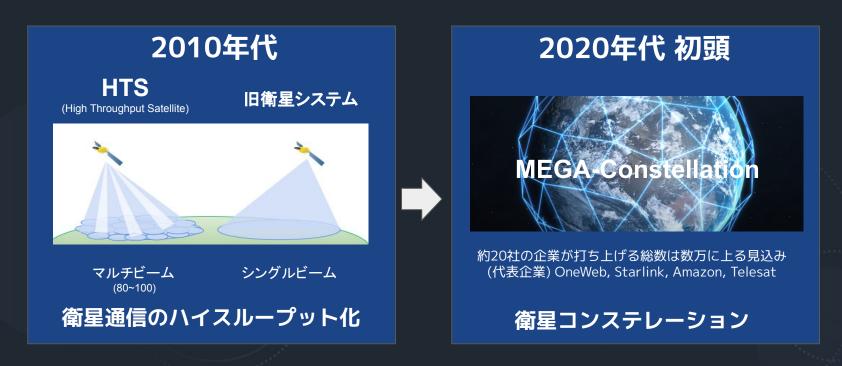
軽量/高効率/低コスト 高エネルギー密度などを実現

太陽光パネル

バッテリー

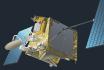
成層圏用モーター

HAPS


High Altitude Platform Station

成層圏通信プラットフォーム

衛星通信サービスの遷移



ビット単価が下がり、従来衛星通信より低遅延/高速回線を グローバルで利用可能な時代へ

OneWeb

基本的なOneWebの特徴

衛星

- · 高度1,200kmに588機+予備機
- ・2時間に1回の速度で地球を周回
- · 重量:150kg

フィーダーリンク Ka-Band (18 - 30 GHz)

ユーザー端末

サービスリンク

Ku-Band (10 - 14 GHz)

陸上(固定/移動)・船舶・航空機など 用途に応じた端末を開発

地上局 東日本/西日本に

1局ずつ構築

1局あたりアンテナ数十基設置

ユースケース

衛星ブロードバンド

コンシューマ

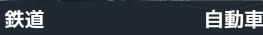
企業・官公庁

バックホール

IoTバックホール

携帯バックホール

モビリティ



航空機

船舶

Starlink

「Starlink Business」の提供を開始 (2023年9月27日)

国内の企業や自治体向けに衛星ブロードバンドサービスを提供

通信速度(下り): 最大220Mbps

通信速度(上り):最大25Mbps

※ベストエフォート型

主なユースケース

