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Preface 

In our published white paper òBeyond 5G White Paper ~Message to the 2030s~ó, we 

researched what are required in various industries in the Beyond 5G era, then we 

proposed òFurther enhancement of specific 5G featuresó as key features for Beyond 5G . 

To address these key features , Target Key P erformance Indicators ( Target KPI) for  

Beyond 5G have been derived, and as quantitative Target KPI related with òSensingó, 

sensing accuracy/resolution with orde r of centimeter (and more)  has been introduced , 

which is much higher than that with order of meters in 5G . 

The Third Generation Partnership Project (3GPP) has initiated discussions on 

Integrated Sensing and Communication (ISAC) for the secondary use of rad io waves. 

Defined use cases include the detection of human and animal intrusions in 

indoor/outdoor environments and understanding the status of automobiles and 

automatic guided vehicles.  Sensing technologies utilizing radio waves have found 

widespread appl ications in detecting the distance and direction of objects, among other 

functionalities. With the current rapid advancements in Artificial I ntelligence (AI) and 

Machine Learning (ML) , their application scope continues to broaden, particularly in 

shape, motion, and gesture detections . 

Sensing technologies can be considered in both aspects of Beyond 5G advancement 

through sensing as well as sensing with Beyond 5G. First, l et us consider  the sensing for 

Beyond 5G. Sensing of wireless environments in Beyond 5G wireless communications is 

performed while transmitting data, and making this sensing more accurate is essential 

for improving performances of the wireless communication s. The sensing data obtained 

here can be used not only for the wireless commu nications, but also for various 

applications  as mentioned above. Next , let us consider Beyond 5G for the sensing . The 

use of high -frequency radios including millimeter -wave and terahertz bands is also 

expected to realize high -precision spatial sensing and localization ( including positioning ) 

by taking advantage of their properties. Such sensing is provided by the wireless 

communications (fixed and movable base stations) and optical communi cations. A basic 

principle of the wireless sensing is to characterize the status and behavior of a target 

object as radio propagation characteristics in wireless channels; a Received Signal 

Strength Indicator (RSSI) and Channel State Information (CSI) are useful as feature 

information for the wireless sensing.  CSI-based sensing is crucial for integrating 

communication and radar sensing. Many studies have shown its adaptability for various 

sensing tasks. However, the CSI-based sensing faces an open issue: how information in 

physical space (sensing environment ) is reflected in CSI observations. To address this, 

further research is needed to better understand the relationship between the physical 

space and the CSI observations.  
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In addition to such wireless sensing, network architecture to collect and process large 

amounts of data from cameras , L ight Detection And Ranging  (LIDAR),  and other sensors, 

as well as sensing of real space as a digital twin are also expected.  

However, there are still major challenges in the practical implementations for the 

design and evaluation of ISAC as a core technology in the Beyond 5G system. First a nd 

foremost, a theoretical framework is necessary to analyze and evaluate the performance 

of current ISAC solutions to identify the benefits and any short comings. Current design 

of the ISAC system calls for the baseband and RF hardware to be functionally shared 

and as a trade -off, the impact of distortion parameters on sensing performance needs to 

be carefully considered. The challenge for the joint waveform design is the very different 

KPIs for communication and sensing where optimizing both might not be so straight 

forward.  

ISAC in the mobile communication network provides great opportunities and benefits 

for synchronized multi -static sensing where the technology challenges here would lie in 

the synchronization  to achieve the optimum fusion sensing resul ts. Concretely, current 

Global Navigation Satellite System ( GNSS) fail to provide pico -second level 

synchronization accuracy to base stations, and new space-time synchronization should 

be provided with  that level of accuracy, enabling the phase -locked synchronization in the 

millimeter wave  between the base stations.  

To tackle these challenges and realize new use cases, there are a lot of research and 

development activities on the sensing techn ologies in Japan. In this white paper, these 

research and develop ment activities and their  results with a lot of figures are shown as 

follows : 

 

-  òCSI-Based Device-Free Sensing Using Deep Learning with 5G NR 28 GHz Bandó 

describes an overview of device -free sensing technology, which detects target 

object without the need for mobile terminals, utilizing deep learning. It further 

introduces the effectiveness o f this technology by experiments using  a radio 

testbed equipped with the physical layer specifications of the 28 GHz-band 5G NR. 

 

-  òIndoor Experimental Evaluation of Device -free Localization Schemes Using 

Channel State Information in Distributed Antenna Systems ó describes a real -time 

channel state information ( CSI)-based device-free localization scheme for 

distributed antenna systems, where CSI feedback frames are collected and used 

as a dataset for machine learning (ML) -based localization. Experimental results 

confirm s that the localization scheme is effective for detecting a target in an indoor 

environment.  
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-  òCSI2Image: CSI -to-Image Conversion using a Generative Model ó describes how 

to convert CSI observations into RGB images corresponding to physical space 

using generative adversarial network (GAN) architecture. The generated RGB 

images intuitively show the relationship between the CSI observations and the 

physical space, and potentially help us to extract many environmental parameters 

for multi -purpose sensing system.  

 

-  òUse Cases for CSI Sensing with an Example of Pedestrian Movement Direction 

Identification ó describes use cases for CSI sensing from the perspectives of  

commercial products and the authorõs research, and specifically the effectiveness 

of pedestrian movement direction identification as one of the use cases for CSI 

sensing is verified by experiment al evaluation  with ML . 

 

-  òIntegrated Sensing and Communication (ISAC) ó describes a concept of ISAC, 

typical use cases, and two case studies of how to use ISAC to improve localization 

accuracy and perform millimeter -level imaging at the THz band using future 

portable devices. The research challenges to implementing ISAC in practice are 

discussed. 

 

-  òSpace-Time Synchronization ó describes that synchronization must not only be 

limited to time but also extend to space, entailing the sharing (synchronization) 

of spatial coordinat e axes. The space-time synchronization  is realized by three 

basic technologies, namely compact atomic clocks, wireless time synchronization, 

and cluster clock systems, which are explained briefly.  

 

In conclusion, as we embark on the journey towards Beyond 5G technologies, the 

sensing technologies emerge as one of key element s in this technological evolution. 

Japan's endeavor to overcome the challenges to realize the sensing technologies , coupled 

with its commitment to research and development in this domain , positions it at the 

forefront of this next -generation communication revolution. This white paper aims to 

provide a comprehensive overview of the potential, challenges, and future directions of 

the sensing  technologies for  Beyond 5G, with a particular emphasis on their initiatives 

and advancements in Japan.  

 

This White Paper was prepared with the generous support of many people who 

participated in the White Paper Subcommittee. The cooperation of telecommunications 

industry p layers and academia experts, as well as representatives of various industries 

other than the communications industry has also been substantial. Thanks to everyoneõs 

participation and support, this White Paper was able to cover a lot of useful information 
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for future business creation discussions between the industry, academia, and 

government,  and for investigating solutions to social issues, not only in the 

telecommunications industry, but also across all industries. We hope that this White 

Paper will help J apan create a better future for society and promote significant global 

activities.  

 

Satoshi Suyama  

NTT DOCOMO, INC.  
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I.  CSI-Based Device-Free Sensing Using Deep Learning with 5G NR 28 GHz 

Band 

Tomoki Murakami,  Shinya Otsuki  

NTT Corporation  

Yutaka  Musaka , Yoshifumi  Morihiro , Huiling Jiang,  Satoshi Suyama  

NTT DOCOMO, INC.  

Yasushi Maruta  
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Abstractñ Integrated Sensing and Communication (ISAC) is gaining  attraction as it 

aims to bring added value to next -generation mobile communication networks. This 

paper offers an overview of the device -free sensing technology, which detects target 

object without the need for mobile terminals, utilizing deep learning. It further 

introduces the effectiveness of this technology based on our experiments conducted on a 

radio testbed equipped with the physical layer specifications of the 5G (NR) 28 GHz band.  

I-1.  Introduction 

The Japanese Cabinet Office has advocated òSociety 5.0ó to realize a human-centered 

society that balances economic advancement with the resolution of social pr oblems 

through a system that highly integrates cyberspace and physical space [1]. This system 

leverages artificial intelligence (AI) and machine learning (ML) to analyze vast amounts 

of sensor data as big data in physical space, providing feedback to human s in various 

forms. Sensor data plays a pivotal role in Society 5.0 and requires efficient and cost -

effective integration into cyberspace. In response to this need, the Third Generation 

Partnership Project (3GPP) has initiated discussions on Integrated Sen sing and 

Communication (ISAC) for the secondary use of radio waves. Defined use cases include 

the detection of human and animal intrusions in indoor/outdoor environments and 

understanding the status of automobiles and Automatic Guided Vehicles (AGVs) [2].  

Sensing technologies utilizing radio waves have found widespread applications in 

detecting the distance and direction of objects, among other functionalities. With the 

current rapid advancements in AI/ML, their application scope continues to broaden, 

parti cularly in shape, motion, and gesture detections [3][4]. This paper specifically 

focuses on device-free sensing as a method for detecting target objects without the need 

for mobile terminals. It introduces a Channel State Information (CSI) -based device-free 

sensing method that achieves high -precision location detection of target objects through 

the application of a Deep Neural Network (DNN). Additionally, we demonstrate the 

performance of the proposed method through the results of an indoor experiment 
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conducted on a radio testbed, equipped with the physical layer specifications of the 5G 

(NR) 28 GHz band [5].  

 

I-2.  CSI-based device-free sensing using DNN 

As outlined in the reference paper [6], the integration of DNN into radio 

communication networks is advancing,  with sensing technologies using radio waves 

being fundamental to this progress. This paper introduces a device -free localization 

method, utilizing a DNN capable of detecting the location of a target object without 

relying on mobile terminals [7][8]. Fig.  I -1 depicts a system model wherein the detection 

of objects such as humans or cars and their states is accomplished through the analysis 

of radio waves  between Beyond 5G (B5G) base stations (BSs). The training data for this 

system includes the target object locations and CSI between B5G -BSs, serving as the 

physical information. CSI, obtained through reference signals and similar means, is vital 

informati on for demodulation processing in radio communication networks. A prediction 

model for the DNN, developed through supervised learning based on recurrent neural 

network architecture, is constructed using the locations of target objects and CSI. 

Subsequently , the location of the target object is determined through the prediction 

model and the acquired CSI. This detected location information can be stored in 

cyberspace as sensor data, thereby contributing to the enhancement of radio 

communication network quali ty.  

 

 

Fig.  I -1 System model.  
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I-3.  Experimental results 

We demonstrate the effectiveness of CSI -based device-free sensing utilizing a 28 GHz 

radio testbed [5]. As depicted in Fig.  I -2, the experimental setti ng comprises an indoor 

office with dimensions of 25 m × 15 m × 3.5 m and four columns. The radio testbed is 

configured to meet the physical specifications of 5G NR in the 28 GHz band, employing 

Multiple Input Multiple Output (MIMO) Orthogonal Frequency Div ision Multiplexing 

(OFDM) transmission with a 100 MHz bandwidth and a subcarrier spacing of 60 kHz. 

To enhance sensing accuracy, antennas for each BS are strategically distributed, as 

illustrated in Fig.  I -2. The CSI for 6 × 2 MIMO -OFDM is acquired at 1 -millisecond 

intervals through reference signals exchanged between BSs. The target object in this 

experiment is a human body phantom adjusted to m atch the dielectric constant of an 

actual human body in the 28 GHz band. Moreover, the phantom is mounted on an AGV 

for automated movement within the designated area, facilitating precise location 

information acquisition.  

Fig.  I -3  shows the cumulative distribution of the distance error between the detected 

location obtained from the proposed DNN -based method and the actual location. The 

predictive DNN model incorporates pre -acquired location information of the human body 

phantom and CSI from the BS. This figure highlights that the median location error for 

the human body phantom is approximately 0.6 m, with a root mean squared error 

(RMSE) of 1.1 m. Whi le previous studies have demonstrated the effectiveness of location 

detection using Wi -Fi within sub -6 GHz bands, these results affirm the feasibility of 

location detection in the 28 GHz band.  

 

Fig.  I -2. Experimental environment.  
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Fig.  I -3. Experimental results.  

 

I-4.  Conclusion 

This paper outlines the CSI -based device-free sensing method for detecting a target 

object without the need for mobile terminals. Furthermore, we demonstrated the 

feasibility of achieving 1 -meter -class localization through indoor experiments conducted 

on a radio tes tbed equipped with the 5G (NR) 28 GHz band. In the future, we intend to 

validate its application in outdoor scenarios and explore the detection capabilities for 

multiple objects.  
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II.  Indoor Experimental Evaluation of Device-free Localization Schemes 

Using Channel State Information in Distributed Antenna Systems 

Osamu Muta  

Kyushu University  

Tomoki Murakami, Shinya Otsuki  

NTT Corporation  

AbstractñWireless communication system -based localization techniques that use 

channel state information (CSI) have attracted much attention. Performance of the CSI -

based localization schemes depends strongly on the selected feature information and 

antenna placement. Herein, we present a real -time CSI -based device-free localization 

scheme for distributed antenna systems, where CSI feedback frames are collected and 

used as a dataset for machine learning (ML) -based localization. Experimental results 

confirmed that the developed localization scheme is effecti ve for detecting a target in an 

indoor environment. We also discuss how much performance improvement can be 

expected when antenna placement is given properly.  

II-1.  Introduction 

Wireless sensing is a key technology supporting the evolution of wireless 

communicat ion for Beyond -5G and 6G networks [1]. The basic principle of wireless 

sensing is to characterize the status and behavior of a target object as radio propagation 

characteristics in wireless channels; a received signal strength indicator (RSSI) and 

channel state information (CSI) are useful as feature information for wireless sensing. 

Recently, indoor device -free object detection approaches using radio signals of existing 

wireless communication infrastructure, have been investigated [2] -[7], where large 

amounts of CSI in the frequency and spatial domains are acquired simultaneously using 

multi -input multi -output (MIMO) transmission with orthogonal frequency division 

multiplexing (OFDM). In [5] -[7], IEEE802.11ac -based wireless local area network 

(WLAN) -based device-free indoor object detection schemes were proposed, by which CSI 

feedback frames in WLANs were collected and analyzed to detect a target object and its 

behavior. However, the performance achieved by the CSI -based approaches depends 

strongly on the an tenna placement and the surrounding propagation environment.  

This paper introduces our recent studies of wireless communication system -based 

indoor device -free localization where feedback beamforming weights are used as effective 

feature data for machine l earning (ML) -based object detection and localization. 

Experiment results demonstrate that our developed algorithm works well with small 

datasets in an indoor environment when distributed antenna placement is accomplished 

properly.  
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II-2.  CSI-based localization approaches 

Fig.  II -1 presents an illustration of the principles of device -free localization in wireless 

communication systems where the CSI between the base station (BS) and the terminal 

is affected by the target  presence. Consequently, it is expected to detect the target by 

learning the relation between the states of the target and of the wireless channel without 

requiring that the target have wireless devices. However, a challenging hurdle is 

acquisition of a su fficient amount of CSI from environments. An effective method is to 

use CSI in existing WLAN systems [5].  

 

Fig.  II -1. Principles of device -free localization using CSI.  

 

Fig.  II -2. Block diagram of the device -free object detection system.  

 

Fig.  II -2 portrays a block diagram of the object detection and localization system 

consisting of an BS, a terminal, and a CSI -capturing terminal, where M, N, and S 

respectively denote the numbers  of tr ansmit antennas, received antennas, and streams. 

On the terminal side, after channel estimation, a compressed version of a right -singular 

matrix obtained by singular value decomposition of the channel matrix is fed back to the 

BS side as beam-forming weigh ts (BFWs). After t he CSI-capturing terminal collects 

feedback frames sent by the terminal , it extracts the compressed CSI samples and uses 

Base station

Terminal

Target
A

m
p

lit
u

d
e

with object

w/o object

Frequency-domain CSI

Frequency

Channel estimation 
and demultiplexingBase

station

N

FFT

FFT

S

CSI

Compression

Feedback 

to AP

Terminal

SVD

¶
¶
¶

¶
¶
¶

CSI

Concatenation

Machine

Learning

Captured CSI

¶
¶
¶¶
¶
¶

MIMO channel

Target

CSI capturing terminal

¶



 

 

 

 15 

them for ML -based localization [5] -[7]. To improve the localization performance, we 

developed an effective lightweigh t algorithm with a small dataset [6], where current and 

past BFWs are concatenated as single data to build more accurate feature data. In 

addition , a frequency -domain sampling -based CSI compression [6] is adopted  to 

minimize the dataset and the required co mplexity . After applying frequency -domain 

sampling and concatenating multiple BFWs as single feature data, they are used for both 

off-line training and for on-line detection.  

 

 

Fig.  II -3. Experiment scenario and setup.  

 

II-3.  Experiment scenario and results 

To clarify the effectiveness of the developed algorithm in a real environment, we 

conducted experimental evaluations of indoor localization with the developed algorithm. 

The experiment scenario and setup using IEEE802.11ac -based WLAN [8] are depicted 

in Fig.  II -3. Details of the experiment s are presented in an earlier report of the relevant 

literature  [7]. The detection area is divided into R regions labeled as 1, é, R=32. For this 

experiment, we consider a multi -class classification problem to detect the location (label) 

of a single target object. Random Forest model is used and built by off -line training with 

measured CSI. We evaluate the detection prob ability,  which  is defined as a conditional 

probability  that the ML result is the same as the actual label number where a target 
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person is located in one of the R=32 labeled areas. In this scenario, the detection 

probability is evaluated when a few ( M s=4) antennas are selected among  numerous 

distributed antennas ( M=12) to elucidate  the relation between antenna placement and 

the detection probability.  

Fig.  II -4 (a) presents the detection probabilities for all possible antenna patterns 

where M s=4 antennas are selected among M=12. The total number of antenna 

combinations is 495. The horizontal axis index shows the antenna pattern numbers 

sorted from left to right in descending order of the average detection probability. The 

result indicates  that about 20-point performance improvement can be confirmed for the 

antenna patterns with the maximum (best) and minimum (worst) detection probabilities. 

Heatmaps of t he best 5 and the worst 5 area -wise detection probabilities are  also shown 

respectively  in Fig.  II -4 (b) and Fig .  II -4 (c). Results imply  that a lower detection 

probability (better performance) tends to be obtained when the AP antenna positions are 

distributed.  

 

Fig.  II -4. Average detection probability for selected antenna positions.  

 

Fig.  II -5 Average detection probability in case of Ms = 2, 4, 6, 8, 10, and 12. 
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Fig.  II -5 portrays the detection probability for a particular antenna placement in 

terms of the number of selected antennas. The table in th e figure presents the selected 

antenna elem ents for each case, which  corresponds to the antenna numbers in Fig.  II -3 

(a). This  figure shows that distributing the antenna placement  improves  the localization 

performance,  which  consequently  maximizes the average detection probability. Results 

indicate  that the overall detection probability improves as M s increases because M s 

becomes greater, and because more features are used for ML -based localization . This 

finding  implies  that, if using the optimal antenna pattern for M s=4 is possible, then 

average detection probability comparable to the case of M s=12 can be achieved. 

 

II-4.  Conclusion 

As described herein, we introduced a device -free locali zation scheme using 

concatenated CSI in wireless communication systems with distributed antennas. 

Experiment results demonstrate that the developed scheme works well with small 

datasets in an indoor environment scenario. Moreover, we have demonstrated that  the 

antenna placement strongly affects the achievable localization performance in an indoor 

environment. Developing object detection algorithms with a more powerful ML model is 

left as a subject for our future work.  
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AbstractñWireless sensing studies based on channel state information (CSI) continue 

to be successful in various sensing tasks. However, we still have no clear answer to what 

extent we can extract the environmental parameters of physical space from CSI.  We 

proposed CSI2Image to address such a challenging issue. It converts CSI observations 

into RGB images corresponding to the physical space using generative adversarial 

network (GAN) architecture. T he generated RGB images intuitively show the 

relationship between the CSI observations and the physical space, and potentially help 

us to extract many environmental parameters for multi -purpose sensing system.  

III-1.  Introduction 

Wireless sensing is becoming an increasingly attractive sensing technique in Beyond 

5G and 6G networks due to its potential to solve issues associated with conventional 

sensor-based sensing and its ability to provide extensive, precise, and non -invasive 

sensing. CSI based sensing is crucial for integrating communication and radar sensing. 

Many studies have shown its adaptability for various sensing tasks, including activity 

recognition [1 ], [2], vital signal sensing [3 ], [4], and localization [5 ], [6]. However, CSI 

based sensing faces an open issue: how information in physical space is reflected in CSI 

observations. To address this, further research is needed to better understand the 

relationship between physical space and CSI observations.  

To tackle the challenging issue, this  paper introduces CSI2Image [7]. It converts CSI 

observations in a more intuitive format, RGB images, allowing us to comprehensively 

understand how CSI reflects the physical space. CSI2Image generates images of the 

physical space from CSI observations usin g GAN architecture in an end -to-end manner.  

Experiments demonstrated that the well -trained CSI2Image can generate the snapshots 

of the physical space from the CSI observations by extracting rich information from them. 

In addition, thanks to the advancemen t of sophisticated image recognition techniques, 

we can extract the various properties of the physical space using the generated images 

and image recognition techniques.  
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III-2.  CSI2Image 

Fig.  III -1 shows the overview of the proposed CSI2Image. The basic architecture is 

based on DCGAN [8], thus the models are trained in an adversarial manner: the 

generator aims to generate realistic imag es, while the discriminator tries to distinguish 

between real and generated images. The generator takes both CSI observations and 

latent variables from a standard normal distribution as input. In addition, it is assumed 

that we have a pair of time -synchron ized CSI observations and images of the targeted 

physical space. 

We experimentally confirmed that simply introducing DCGAN does not lead to 

satisfactory results. We proposed a unique training loop called òHybrid Learningó, which 

aims to ensure the generali zability of the networks for both image generation and 

real/fake determination, as well as obtaining the precise mapping from CSIs to the 

images. Fig.  III -2 shows the three different training steps included in the Hybrid 

Learning.  The first step is CSI2Image Learning, where the generator is supervised 

trained using CSI observation and their corresponding images, followed by 

Discriminator Learning, wher e the discriminator is trained with real images and 

generated images, but this time the generator generates images from random latent 

variables. Finally, after every K iteration, Generality Learning is triggered to update the 

parameters of networks and dec eive the discriminator with the images generated by CSI 

observations. The generator acquires the mapping from the probability field of CSI to 

that of the image domain while avoiding overfitting to the training dataset through the 

combination of direct supe rvision and adversarial training. The training loop 

successfully displays the surrounding environment in the physical space containing in 

CSI observations in RGB images. To extract the properties of the physical space from 

the images, we can employ existin g vision -based object detection techniques like YOLO 

[9] according to the task specification.  

 

Fig.  III -1. The overview of CSI2Image . 
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(a) CSI2Image Learning  

 

(b) Discriminator Learning  

 

(c) Generality Learning  

Fig.  III -2. The proposed hybrid learning.  

 

III-3.  Evaluation 

To demonstrate the performance of CSI2Image to accurately generate RGB images of 

an indoor space from CSI observations and its performance in different sensing tasks, 

we conducted two experiments: object classification and human location classification. 

As shown in Fig.  III -3, CSI2Image successfully generated the RGB images and achieved 

over 90% accuracy for both tasks. Especially for human location cla ssification task, we 

compared the efficiency of our proposed Hybrid Learning compared to supervised 

learning only with the generator (gonly) and original DCGAN training scheme (gan).  

Experimental results show that Hybrid Learning outperforms the other two  methods in 

terms of detection rate, similarity score between generated images and ground truth, 

bounding box confidence scores, and classification accuracy. This advantage is even more 

pronounced in more complex scenarios involving two people.  
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Fig.  III -3. Qualitative and quantitative evaluation for different sensing tasks.  

(top) Object classification, (bottom) Human location classification . 

 

III-4.  Conclusion 

This paper introduced the overview of CSI2Imag e, a GAN-based CSI-to-image 

conversion method. We demonstrated that the combination of direct supervision and 

adversarial training successfully achieves the conversion. The conversion not only helps 

us to represent physical information CSI has in a more ex plicable format but also helps 

us to construct multi -purpose sensing system with the vision -based detection techniques.  
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IV.  Use Cases for CSI Sensing with an Example of Pedestrian Movement 

Direction Identification 

Masakatsu Ogawa  

Sophia University  

AbstractñThe original purpose of communication is to convey information. Channel 

state information (CSI) is used for high -speed transmission and can also function as a 

sensor. Adding sensing ability to the communication function is expected to open up new 

services and applications. This paper describes use c ases for CSI sensing from the 

perspectives of commercial products and my research, specifically pedestrian movement 

direction identification.  

IV-1.   Introduction 

Wireless communication has traditionally been used to carry information through 

space as a medium. M ost wireless communication systems currently use MIMO -OFDM 

transmission to achieve high -speed transmission rates. This method uses channel state 

information (CSI) that indicates the radio propagation condition between the 

transmitter and receiver. CSI can also be used as a sensor since it indicates the spatial 

information between a transmitter and receiver. The sensing using this information 

corresponds to incorporating sensing into communication, which has been discussed in 

"Beyond 5G and 6G" and "IEEE802. 11 wireless LAN". The technical terms for this are 

integrated sensing and communication (ISAC) and joint sensing and communication 

(JSAC). However, most current wireless communication chipsets do not provide an 

interface for users to obtain CSI.  

While res earch activity for CSI sensing is currently high, the number of commercial 

products for Wi -Fi sensing is rare. In my opinion, the reason is that the service 

requirements of use cases are strict, and the requirements are not entirely satisfied due 

to the un certainty of radio propagation. Compared with RSSI, which also indicates the 

radio propagation condition, CSI has a higher reproducibility; thus, the use of CSI is 

suitable for sensing. The disadvantage of CSI is that it depends on the transmitterõs and 

receiverõs location. When the location changes, the CSI also differs from the change 

before its location.  

IEEE802.11bf discusses use cases for sensing [1] but does not confirm the feasibility. 

The paper describes use cases of CSI sensing applications from c ommercial products and 

my research, including advantages and disadvantages from the feasibility viewpoint.  
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IV-2.  Use cases in IEEE802.11bf and commercial products 

The difference between mobile communication and wireless LAN is the coverage area. 

The use cases differ depending on whether the sensing target exists in an outdoor public 

space or an indoor room. CSI indicates the radio propagation condition between the 

transmitter and receiver. Therefore, detecting a specific sensing target is difficult in an 

outdoor public space because of the wide area.  

IEEE802.11bf discusses use cases for existing wireless LAN standards, which operate 

at 2.4GHz, 5GHz, 6GHz, and 60GHz [1]. The range resolution relates to the signal 

bandwidth, i.e., the frequency band. The specific use case for the high -frequency band, 

i.e., 60GHz, is high -resolution sensing, e.g., gesture recognition (hand or figure 

movement), and for the low -frequency band, is low -resolution sensing, e.g., human 

presence and motion detection [2]. Among them, CSI se nsing mainly corresponds to low -

resolution sensing. The use cases discussed in IEEE802.11bf are as follows: Room 

sensing, Gesture recognition for full -body movement, Health care, and Car sensing.  

I found some information about the feasibility of the above use cases. Hex Home by 

Origin Wireless is a commercial product for room sensing and healthcare [3]. Specifically, 

room sensing is used for home security by detecting intruders and is also for home 

monitoring of older people and/or children. The CSI variati on is used to detect human 

movement. Healthcare is used for measuring breathing rate using the CSI periodicity. 

Wiz product named SpaceSense  by Signify is another commercial product that 

corresponds to room sensing, i.e., a smart light [4]. This light cont rol uses the CSI 

variation relating to the detection of human movement. Although I could not confirm 

whether car sensing by Murata Manufacturing has been commercialized, CSI sensing is 

used to detect the presence of a child in the car by measuring movement  detection and 

breathing rate [5]. Note that the accuracy of breathing rate measurement depends on 

the location of the transmitter and receiver.  

Fig.  IV -1 shows the relationship between use cases and the purpose of the product. 

CSI variation is used for presence detection, and there are many examples of its 

application. Combining presence detection and breathing rate measurement for intruder 

detection i s possible, but I could not find such a product.  
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Fig.  IV -1. Relationship between use cases and the purpose of products.  

 

IV-3.  Use cases in my research 

My research aims to investigate the potential of CSI sensing without considering the 

userõs needs. Basically, the commercial products mentioned above do not require 

machine learning. Based on my experience with Wi -Fi, use cases for CSI sensing can be 

categorized into those that require machine learning and t hose that do not.  

CSI sensing can be used for various applications without machine learning. Here are 

some examples of CSI sensing use cases that do not require machine learning: breathing 

rate measurement [6], people counting using breathing rate measurem ent [6], and 

propeller rotation speed measurement [7].  

CSI sensing can also be used with machine learning for more advanced applications 

such as human activity recognition [8], material identification [9], pedestrian movement 

direction identification [10],  human location estimation [11], water height estimation in 

a bottle [12], pose estimation [13], and laundry dryness estimation [14].  

 

IV-4.  Pedestrian movement direction identification 

Pedestrian movement direction identification is one of the use cases for CSI  sensing. 

Nowadays, access points are often installed on the ceilings of offices and are connected 

to Ethernet or wireless mesh networks. In the future, if it becomes possible to measure 

CSI from communication between access points, it will be possible to estimate human 

flow.  

Suppose consider a crossroads in a hallway. As shown in Fig.  IV -2, one transmitter 

and three receivers are installed. Due to cost constraints, it is necessary to reduce the 

number of receivers as much as possible. There are 13 types of movement directions: four 

entrances to the crossroads and three exits from the crossr oads per entrance. In addition 

to the twelve conditions, there is the condition that no humans are at the crossroads. 

Three people walked ten times for CSI measurements for each direction, resulting in 30 

samples per direction. Including the case where no humans are at the crossroads, the 

total number of samples is 390. If the CSI differs in every direction, it is necessary to pay 
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attention to the time series of CSI. Therefore, LSTM is used as a machine learning 

algorithm to classify the 13 types of movemen t directions, and accuracy is evaluated by 

leave-one-out cross-validation.  

 

 

Fig.  IV -2. Experimental environment.  

 

 

Fig.  IV -3. Experimental result.  

 

The accuracy of the difference in the number of receivers is shown in Fig.  IV -3. The 

accuracy improves with the number of receivers and is over 90% when the nu mber of 

receivers is two or three. When the receiver is only RxE, the accuracy is less than 90%. 

Fig.  IV -4 shows the time -series CSI in three receives. When a human walks from N to 

S, the CSI fluctuation at only RxE is short. Because of the short time of the CSI 

fluctuation, it isn't easy to distinguish when a human walks from N to S and when a 

human walks fro m S to N. The confusion matrix using only RxE is shown in Fig.  IV -5, 

where the label indicates direction and "nothing" indicates no human exists. I fou nd that 

the estimation error occurs between StoN and NtoS. Therefore, the receiver at a non -

line -of-sight location from the transmitter needs to be set to achieve higher accuracy.  
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Fig.  IV -4. CSI at each re ceiver. 

 

 

Fig.  IV -5. Confusion matrix at RxE.  
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